Abstract

G protein-coupled receptor (GPCR) signaling machinery can serve as a direct target of reactive oxygen species (ROS), including superoxide (O2-), hydrogen peroxide (H2O2) as well as reactive nitrogen species, including nitric oxide and S-nitrosothiols (SNOs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of the major sources of O2- produced following GPCR activation in vasculature. Nitric oxide is generated by three isoforms of nitric oxide synthase (NOS). This review will summarize the recent progress on GPCR signaling modulation by NADPH oxidase-derived ROS and NOS-derived SNOs. ROS and reactive nitrogen species play an important role in GPCR signaling involved in various physiological functions such as cell growth, migration, gene expression as well as pathophysiologies. NADPH oxidase-derived ROS activate specific redox signaling events involved in cardiovascular diseases. SNOs can modulate GPCR signaling and internalization through S-nitrosylation of the scaffolding protein beta-arrestin, the GPCR kinases, and dynamin, a guanosine triphosphatase responsible for endocytosis. NADPH oxidase-derived ROS and NOS-derived SNOs are now recognized as important second messengers to regulate GPCR signaling, thereby contributing to various biological and pathophysiological functions. Understanding the molecular mechanism of how ROS, nitric oxide, and SNOs might modulate GPCR signaling is essential for development of novel therapeutic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.