Abstract
Lipid rafts are emerging as key players in the integration of cellular responses. Alterations in these highly regulated signaling cascades are important in structural, mechanical and functional abnormalities that underlie vascular pathological processes. The present review focuses on recent advances in signal transduction through caveolae/lipid rafts, implicated in hypertensive processes. Caveolae/lipid rafts function as sites of dynamic regulatory events in receptor-induced signal transduction. Mediators of vascular function, including G-protein coupled receptors, Src family tyrosine kinases, receptor tyrosine kinases, protein phosphatases and nitric oxide synthase, are concentrated within these microdomains. The assembly of functionally active nicotinamide adenine dinucleotide phosphate oxidase and subsequent reactive oxygen species production are also dependent on interactions within the caveolae/lipid rafts. Recent findings have also demonstrated the importance of actin-cytoskeleton and focal adhesion sites for protein interactions with caveolae/lipid raft. Many vascular signaling processes are altered in hypertension. Whether these events involve lipid rafts/caveolae remains unclear. A better understanding of how signaling molecules compartmentalize in lipid rafts/caveolae will provide further insights into molecular mechanisms underlying vascular damage in cardiovascular disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.