Abstract

BackgroundRadiotherapy (RT) and androgen-deprivation therapy (ADT) are standard treatments for advanced prostate cancer (PC). Tumor vascularization is recognized as an important physiological feature likely to impact on both RT and ADT response, and this study therefore aimed to characterize the vascular responses to RT and ADT in experimental PC.MethodsUsing mice implanted with CWR22 PC xenografts, vascular responses to RT and ADT by castration were visualized in vivo by DCE MRI, before contrast-enhancement curves were analyzed both semi-quantitatively and by pharmacokinetic modeling. Extracted image parameters were correlated to the results from ex vivo quantitative fluorescent immunohistochemical analysis (qIHC) of tumor vascularization (9 F1), perfusion (Hoechst 33342), and hypoxia (pimonidazole), performed on tissue sections made from tumors excised directly after DCE MRI.ResultsCompared to untreated (Ctrl) tumors, an improved and highly functional vascularization was detected in androgen-deprived (AD) tumors, reflected by increases in DCE MRI parameters and by increased number of vessels (VN), vessel density ( VD), and vessel area fraction ( VF) from qIHC. Although total hypoxic fractions ( HF) did not change, estimated acute hypoxia scores ( AHS) – the proportion of hypoxia staining within 50 μm from perfusion staining – were increased in AD tumors compared to in Ctrl tumors. Five to six months after ADT renewed castration-resistant (CR) tumor growth appeared with an even further enhanced tumor vascularization. Compared to the large vascular changes induced by ADT, RT induced minor vascular changes. Correlating DCE MRI and qIHC parameters unveiled the semi-quantitative parameters area under curve ( AUC) from initial time-points to strongly correlate with VD and VF, whereas estimation of vessel size ( VS) by DCE MRI required pharmacokinetic modeling. HF was not correlated to any DCE MRI parameter, however, AHS may be estimated after pharmacokinetic modeling. Interestingly, such modeling also detected tumor necrosis very strongly.ConclusionsDCE MRI reliably allows non-invasive assessment of tumors’ vascular function. The findings of increased tumor vascularization after ADT encourage further studies into whether these changes are beneficial for combined RT, or if treatment with anti-angiogenic therapy may be a strategy to improve the therapeutic efficacy of ADT in advanced PC.

Highlights

  • Radiotherapy (RT) and androgen-deprivation therapy (ADT) are standard treatments for advanced prostate cancer (PC)

  • The CWR22 xenograft mimicks the clinical situation of PC disease progression, by regressing after ADT, and showing stability during long-term ADT before recurrent CR tumor growth is evident, a disease which presently is incurable in the clinic

  • Assessment of response to radiotherapy and androgen-deprivation therapy by quantitative immunohistochemistry To characterize the response to RT and ADT, quantitative fluorescent immunohistochemical analysis (qIHC) was performed

Read more

Summary

Introduction

Radiotherapy (RT) and androgen-deprivation therapy (ADT) are standard treatments for advanced prostate cancer (PC). Tumor vascularization is recognized as an important physiological feature likely to impact on both RT and ADT response, and this study aimed to characterize the vascular responses to RT and ADT in experimental PC. Androgen-deprivation therapy (ADT) is established as an integral component of contemporary management of advanced PC, providing reduction of androgen-sensitive tumor cells and symptomatic relief for the patients [1]. Tumor vascularization is an important physiological feature of tumor tissue, influencing both RT and ADT response. Well-vascularized tumors are more likely to be well oxygenated, in contrast to poorly vascularized tumors often suffering from tumor hypoxia, reducing the efficacy of combined treatments, including RT. ADT affects tumor vascularization by its direct influence on androgen-sensitive, endothelial cells. The more long-term effects of ADT on tumor vasculature may be or more important in understanding PC progression, and for selection of combined treatments

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call