Abstract

Background and AimsMega-wild fires are exposing large communities to weeks or months of high concentration smoke-related fine particulate air pollution (PM). However, little research has examined the long-term vascular responses from exposure to PM of this concentration and duration. We investigated whether level of exposure to 6 weeks of PM from the 2014 Hazelwood coal mine fire was associated with abnormal vascular responses approximately four years later.MethodsA cross-sectional analysis was undertaken of 387 participants (225 exposed, 162 unexposed) aged 55–89 years, 3.5–4 years after the mine fire. The primary outcome was flow-mediated dilatation (FMD), with time to reach peak diameter as the secondary outcome. Other secondary markers included high-sensitivity C-reactive protein (hsCRP) and ischaemic Electrocardiogram (ECG) changes.ResultsThere was no evidence of a difference in FMD between participants with high, medium, low or no mine-fire related PM2.5 exposure (4.09% vs 4.06% vs 4.02% vs 3.98%, respectively, p=0.99). Likewise, there was no difference in hsCRP or ischaemic ECG changes. In contrast, there was evidence of a difference in time to peak diameter (p=0.002) with more unexposed participants reaching peak diameter within 30 seconds (36%) compared to those who had high, medium, or low exposure (23%, 22%, 13%, respectively). Multivariate ordinal logistic regression analysis suggested that township, Morwell (exposed) vs Sale (unexposed), but not level of PM2.5 exposure, was associated with delayed time to peak diameter (OR 2.71; 95% CI 1.56, 4.69). Smokers also had delayed time to peak diameter.ConclusionThere was no association between level of exposure to PM2.5 from the 6-week Hazelwood coal mine fire smoke event and reduced FMD, elevated hsCRP or ischaemic ECG four years later. Evidence of delayed time to peak diameter observed in adults from the exposed town, compared to an unexposed town, requires further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.