Abstract
Since several additional actions of bone bisphosphonates have been proposed, we studied the effect of the bisphosphonate alendronate (ALN) on the vascular response to environmental stress. Primary cultures of endothelial cells (EC) and vascular smooth muscle cells (VSMC) exposed to strained conditions were employed for experimental evaluation. After ALN treatment, cell migration, proliferation, and angiogenesis assays were performed. The participation of signal transduction pathways in the biochemical action of ALN was also assessed. In VSMC cultures, ALN counteracted the stimulation of cellular migration elicited by the proinflammatory agent lipopolysaccharide (LPS) or by high levels of calcium and phosphorus (osteogenic medium). Indeed, ALN reduced the increase of VSMC proliferation evoked by the stressors. When LPS and osteogenic medium were added simultaneously, the enhancement of cell proliferation dropped to control values in the presence of ALN. The mechanism of action of ALN involved the participation of nitric oxide synthase, mitogen-activated protein kinase (MAPK), and protein kinase C (PKC) signaling pathways. The study revealed that ALN exhibits a proangiogenic action. On EC, ALN enhanced vascular endothelial growth factor (VEGF) synthesis, and induced capillary-like tube formation in a VEGF-dependent manner. The presence of vascular stress conditions (LPS or osteogenic medium) did not modify the proangiogenic action elicited by ALN. The findings presented suggest an extra-bone biological action of ALN, which could contribute to the maintenance of vascular homeostasis avoiding cellular damage elicited by environmental stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.