Abstract

Hypertension is a major health problem and a main risk factor for cardiovascular diseases. We have shown that overexpression of profilin-1 in blood vessels of transgenic mice generates mechanical tone and led to vascular remodeling/hypertension. However, little is known whether cardiac contractile performance in these mice is compromised. We investigated the in vivo contractile function and in vitro contractile performance using isolated papillary muscles from both right ventricle and left ventricle of profilin-1 mice at older age. Our results showed mild left ventricular hypertrophy and moderate systolic dysfunction in profilin-1 mice as evident by increased heart/body weight ratio and echocardiography analysis. Under near physiological conditions, right ventricle papillary muscles of profilin-1 mice maintained their peak isometric active developed tension, and the rate of force development over the entire frequency range of 4-14 Hz. Positive inotropic responses to increasing Ca and β-adrenergic stimulation were also maintained. Conversely, left ventricular papillary muscles of profilin-1 mice exhibited depressed peak isometric, peak isometric active developed tension and rate of force development, and depressed positive inotropic responses to increasing Ca and β-adrenergic stimulation. We here provide functional evidence that a significant contractile dysfunction in profilin-1 mice exists. Targeting vascular profilin-1 signaling could represent a promising therapeutic approach in hypertensive patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.