Abstract

Vascular reactivity of adipose tissue (AT) is hypothesized to play an important role in the development of obesity. However, the exact role of vascular reactivity in the development of obesity remains unclear. In this study, we investigated the chronological changes in vascular reactivity and the microenvironments of the visceral AT (VAT) and subcutaneous AT (SAT) in lean and obese mice. Changes in blood flow levels induced by a β-adrenoceptor agonist (isoproterenol) were significantly lower in the VAT of the mice fed a high-fat diet (HFD) for 1 and 12 weeks than those in the VAT of the mice fed a low-fat diet (LFD) for the same period; no significant change was observed in the SAT of any mouse group, suggesting depot-specific vascular reactivity of AT. Moreover, the hypoxic area and the expression of genes associated with angiogenesis and macrophage recruitment were increased in the VAT (but not in the SAT) of mice fed an HFD for 1 week compared with mice fed an LFD. These changes occurred with no morphological changes, including those related to adipocyte size, AT vessel density, and the diameter and pericyte coverage of the endothelium, suggesting a determinant role of vascular reactivity in the type of AT remodeling. The suppression of vascular reactivity was accompanied by increased endothelin1 (Edn1) gene expression and extracellular matrix (ECM) stiffness only in the VAT, implying enhanced contractile activities of the vasculature and ECM. The results suggest a depot-specific role of vascular reactivity in AT remodeling during the development of obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call