Abstract

Vascular plant functions as controlling mechanisms of methane emissions were investigated at two contrasting habitat types at a subarctic peatland ecosystem in northern Sweden. One of the habitats was ombrotrophic (vegetation dominated byEriophorum vaginatumandCarex rotundata), while the other was minerotrophic (vegetation dominated byEriophorum angustifolium). Through shading manipulations we successfully reduced the gross photosynthetic rates of the vascular plant communities. At the ombrotrophic site a 25% reduction in gross photosynthesis lead to a concomitant 20% reduction in methane emission rates, indicating a strong substrate‐based coupling between the vascular plant community and the methanogenic populations. At the minerotrophic site, methane emission rates were unaffected, although plant photosynthesis was reduced by almost 50%. However, the methane emission rates at the minerotrophic site were significantly correlated with the number of vascular plants. We conclude that at the minerotrophic site the vegetation influences methane emission rates by facilitating methane transportation between the soil and the atmosphere, while at the ombrotrophic site the relationship between the vascular plant community and methane emissions is mediated by substrate‐based interactions regulated by plant photosynthetic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.