Abstract

Lung cancer is the leading cause of death among cancers. Early detection and diagnosis present a major goal in the efforts to improve survival rates of lung cancer patients. Changes in angiogenic activity and microvascular perfusion properties in cancers can serve as markers of malignancy. The aim of this study was to employ MRI means to measure the microvascular perfusion parameters of orthotopic nonsmall cell lung cancer, using the experimental rat model. Anatomical and dynamic contrast-enhanced lung images were acquired at high spatial resolution, and registered and analyzed, pixel by pixel and globally, by means of a model-based algorithm. The MRI output yielded color-coded parametric images of the influx and efflux transcapillary transfer constants that indicated rapid microvascular perfusion. The transfer constants were about 1 order of magnitude higher than those found in other tumors or in nonorthotopic lung cancer, with the influx constant median value of 0.42 min(-1) and the efflux constant median value of 1.61 min(-1). The rapid perfusion was in accord with the immunostaining of the capillaries, which suggested the tumor exploitation of the existing alveolar vessels. The results showed that high resolution, dynamic, contrast-enhanced MRI is an effective tool for the quantitative measurement of spatial and temporal changes in lung cancer perfusion and vasculature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.