Abstract

Objective: Solid tumors experience intra-tumor hypoxia once they achieve an increase in size. This is due to an imbalance between tumor oxygenation and the metabolic demand of the tumor as well as the development of chaotic microvasculature of the tumor. The hypoxic condition creates several barriers to the delivery of antitumor drugs to the tumor. Intra-tumor hypoxia alters the tumor microenvironment, accelerating the process of tumor angiogenesis, and culminating in the formation of chaotic tumor vasculature. The abnormal and faulty tumor microvasculature alters the interstitial pressure gradients of the tumor which severely impairs delivering drugs to solid tumors. Rectifying this microenvironment is an important avenue of anticancer research. The normalization of tumor vasculature may lead to an excellent anticancer management. Study Selection and Data Source: The present review involves recent studies on anticancer research targeting the hypoxia-signaling cascade in solid tumors. Results and Conclusion: The present review covers the cause of intra-tumor hypoxia, the resulting problems of anticancer drug delivery to the tumor, and contemporary research to overcome the problem of drug delivery to hypoxic solid tumors in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.