Abstract

Exercise training is known to induce several adaptations in the cardiovascular system, one of which is increased skeletal muscle blood flow at maximal exercise. Improved muscle blood flow, in turn, could in part be accounted for by augmented endothelium-dependent, nitric oxide (NO)-mediated vasodilation. Studies have indeed demonstrated that endothelium-dependent, NO-mediated dilation of conductance-type vessels is augmented after endurance exercise training; recently, this adaptation has been extended into resistance-type vessels within rodent skeletal muscle. With the latter, however, it appears that only resistance vessels supplying muscle active during training sessions exhibit this adaptation. These findings in rats are in contrast to those from human studies, in which increased endothelium-dependent dilation has been observed in vasculatures not associated with elevated blood flow during exercise. Increased expression of endothelial NO synthase (eNOS) appears to underlie enhanced endothelium-dependent, NO-mediated dilation of both conductance and resistance vessels. Greater eNOS expression may also underlie the preventive and (or) rehabilitative effect(s) of exercise training on atherosclerosis, given that NO inhibits several steps of the atherosclerotic disease process. Thus, exercise training may induce adaptations that benefit both vasodilation and vascular health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.