Abstract

Differential artery-vein (AV) analysis is essential for retinal study, disease detection, and treatment assessment. This study is to characterize vascular reflectance profiles and blood flow patterns of retinal artery and vein systems in optical coherence tomography (OCT) and OCT angiography (OCTA), and establish them as robust signatures for objective AV classification. A custom designed OCT was employed for three-dimensional (3D) imaging of mouse retina, and corresponding OCTA was reconstructed. Radially resliced OCT B-scans revealed two, i.e. top and bottom, hyperreflective wall boundaries in retinal arteries, while these wall boundaries were absent in OCT of retinal veins. Additional OCTA analysis consistently displayed a layered speckle distribution in the vein, which may indicate the venous laminar flow. These OCT and OCTA differences offer unique signatures for objective AV classification in OCT and OCTA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.