Abstract
Angiogenic factors, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF), and their receptors, are strongly regulated during the development of bovine corpus luteum (CL). The aim of this study was to investigate real-time changes of these factors in luteal tissue of cows (n = 4-5 per group) in the mid-luteal phase (day 8-12) after intramuscular injection of the PGF2alpha-analog Cloprostenol. Before (control) and 2, 4, 12, 48, and 64 hr after prostaglandin (PG) injection, CL were collected by transvaginal ovariectomy. RT-PCR for VEGF, VEGF-receptor type 1 (VEGF-R1), VEGF-R2, acidic FGF (FGF-1), basic FGF (FGF-2), and FGF-receptor (FGF-R) was performed. Additionally, the protein concentration for VEGF was determined. The mRNA expression of VEGF and its two receptors (VEGF-R1 and -R2) was significantly downregulated during structural luteolysis (after 12 hr). VEGF protein concentration already significantly declined 2 hr after PGF2alpha. Surprisingly FGF-1 and FGF-2 were significantly and maximally upregulated during functional luteolysis (until 12 hr). Furthermore, FGF-R mRNA was significantly upregulated at 2 hr after PGF2alpha, when compared with the control group. During structural luteolysis, the expression of FGFs and their receptors was not significantly different from control, except FGF-2 mRNA, which was downregulated at 64 hr. We conclude that the cessation of VEGF-support for the CL plays a role during structural luteolysis, whereas FGFs seem to have a major impact on functional luteolysis. The possible role of these growth factors could be a transient counter-regulation of luteolysis, but also an involvement in preventing inflammatory reactions during luteal regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.