Abstract

Vascular endothelial growth factor (VEGF) is a potent vascular mitogen that selectively stimulates vascular smooth muscle cell (VSMC) migration through an unknown mechanism while having no effect on VSMC proliferation. It is known that VSMC migration and proliferation are dependent on the second messenger Ca2+ and, in particular, mitogen-stimulated Ca2+ influx. We hypothesized that the selective effect of VEGF on VSMC migration versus proliferation was a result of differential VEGF-stimulated Ca2+ signaling pathways. Primary cultured human aortic smooth muscle cells (VSMCs) were grown to subconfluency and assigned to the following experimental groups: no stimulation, stimulation with platelet-derived growth factor-BB (PDGF-BB) (20 ng/mL) as positive control, and stimulation with VEGF165 (40 ng/mL). Total increase in [Ca2+]cyt and intracellular calcium release was quantified with the use of a fura-2 fluorescence assay. Assays for the following receptors VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and PDGFR-beta were performed by immunoprecipitation, while PLCgamma1, Akt 1/2, and phospholamban B phosphorylation were assessed with Western immunoblotting. VSMCs stimulated with VEGF165 exhibited no intracellular Ca2+ release, compared with a 75 +/- 30 nmol/L intracellular calcium release after PDGF-BB stimulation, (P < .02) VEGF165-stimulated VSMCs in Ca2+-containing media exhibited 192 +/- 26 nmol/L increase in [Ca2+]cyt, compared with 354 +/- 54 nmol/L increase after PDGF-BB stimulation (P < .02). VEGF165 did not phosphorylate PLCgamma1 after 1, 5, or 10 minutes of treatment. VEGF165 treatment did not result in PI3-K/Akt activation at 1-, 5-, or 10-minute time points. Calmodulin-dependent kinase II (CaMKII) was activated by both VEGF165 and PDGF-BB after 1 and 5 minutes of stimulation. The presence of the receptors VEGFR-1, VEGFR-2, and PDGFR-beta was confirmed in all experimental groups. VEGF induces extracellular calcium influx but no intracellular calcium release in VSMCs. This lack of intracellular Ca2+ release stems from the inability of VEGF165 to activate the PLCgamma1 cascade and IP3 receptor-mediated Ca2+ release. The lack of PI3-K/Akt activation at these time points indicates a novel extracellular Ca2+ influx pathway sufficient to activate CaMKII. A paradigm relating extracellular Ca2+ influx to CaMKII activation and migration is suggested and may account for the selective effects of VEGF on VSMC migration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.