Abstract
BackgroundApoptosis of osteoblasts and osteoclasts regulates bone homeostasis. Skeletal injury in humans results in 'angiogenic' responses primarily mediated by vascular endothelial growth factor(VEGF), a protein essential for bone repair in animal models. Osteoblasts release VEGF in response to a number of stimuli and express receptors for VEGF in a differentiation dependent manner. This study investigates the putative role of VEGF in regulating the lifespan of primary human osteoblasts(PHOB) in vitro.MethodsPHOB were examined for VEGF receptors. Cultures were supplemented with VEGF(0–50 ng/mL), a neutralising antibody to VEGF, mAB VEGF(0.3 ug/mL) and Placental Growth Factor (PlGF), an Flt-1 receptor-specific VEGF ligand(0–100 ng/mL) to examine their effects on mineralised nodule assay, alkaline phosphatase assay and apoptosis.. The role of the VEGF specific antiapoptotic gene target BCl2 in apoptosis was determined.ResultsPHOB expressed functional VEGF receptors. VEGF 10 and 25 ng/mL increased nodule formation 2.3- and 3.16-fold and alkaline phosphatase release 2.6 and 4.1-fold respectively while 0.3 ug/mL of mAB VEGF resulted in approx 40% reductions in both. PlGF 50 ng/mL had greater effects on alkaline phosphatase release (103% increase) than on nodule formation (57% increase). 10 ng/mL of VEGF inhibited spontaneous and pathological apoptosis by 83.6% and 71% respectively, while PlGF had no significant effect. Pretreatment with mAB VEGF, in the absence of exogenous VEGF resulted in a significant increase in apoptosis (14 vs 3%). VEGF 10 ng/mL increased BCl2 expression 4 fold while mAB VEGF decreased it by over 50%.ConclusionVEGF is a potent regulator of osteoblast life-span in vitro. This autocrine feedback regulates survival of these cells, mediated via a non flt-1 receptor mechanism and expression of BCl2 antiapoptotic gene.
Highlights
Bone is a complex, dynamic and highly specialized tissue that undergoes continuous regeneration and remodeling throughout life
We have reported that isolated skeletal injury in humans results in local and systemic 'angiogenic' responses primarily mediated by vascular endothelial growth factor (VEGF) [6,7]
In particular we investigate the direct effects of vascular endothelial growth factor and its Flt-1 specific mutant Placental Growth Factor (PlGF) on osteoblast differentiation, bone formation and apoptosis
Summary
Dynamic and highly specialized tissue that undergoes continuous regeneration and remodeling throughout life. Within the temporary functioning structure of the basic multicellular unit (BMU), osteoblasts mediate bone formation, osteoclasts bone resorption, while both cells share intimate proximity with the vascular endothelium and haemopoietic and stromal cells of the bone marrow. These BMU's represent the spatial and temporal orchestration of the strictly controlled activities of osteoblasts, osteoclasts and cells of the vascular tree The function of these cells is regulated by a number of systemic and local factors that modulate bone metabolism and vasclarization [1]. The principle 'angiogenic' cytokines that regulate blood vessel formation are vascular endothelial growth factor (VEGF), bFGF, PDGF, TGFβ, TNFα and angiopoietin-1 (Ang-I). Skeletal injury in humans results in 'angiogenic' responses primarily mediated by vascular endothelial growth factor(VEGF), a protein essential for bone repair in animal models. This study investigates the putative role of VEGF in regulating the lifespan of primary human osteoblasts(PHOB) in vitro
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.