Abstract

Vascular endothelial growth factor (VEGF) is expressed by the podocytes of renal glomeruli, and has profound influences on systemic microvascular permeability and haemodynamics. We describe an extensive refinement of a model that permits evaluation of the ultrafiltration coefficient (LpA) of isolated mammalian glomeruli, in the absence of circulating and haemodynamic influences, and tested the hypothesis that VEGF influences glomerular LpA via an effect on endothelial cells. Glomeruli were isolated by sieving Wistar rat renal cortical tissue, and individually loaded onto a suction micropipette. Flowing perifusate containing 1% bovine serum albumin (BSA) was rapidly switched to an oncopressive perifusate containing 8% BSA, eliciting transglomerular fluid efflux. The rate of the resultant reduction in glomerular volume was used to calculate glomerular LpA (1.07 +/- 0.53 nl min(-1) mmHg(-1) (mean +/-s.d.), n= 51), which compares favourably with those reported in the same rat strain using different techniques. A significant relationship between LpA and initial glomerular volume (Vi) (r= 0.72, n= 41, P < 0.0001) necessitated correction of LpA for Vi. The initial rate of change of glomerular volume, normalized for Vi, showed a strong positive correlation with applied oncotic gradient (Pearson r= 0.59, n= 28, P < 0.001), as predicted by Starling's law of filtration. A 60 min exposure of glomeruli to 1 nm VEGF increased glomerular LpA/Vi (1.19 +/- 0.19 (n= 10) to 2.23 +/- 0.33 (n= 9) min(-1) mmHg(-1) (mean +/-s.e.m.); P < 0.02). Time- and concentration-dependent relations between VEGF and LpA/Vi were observed. The VEGF-induced elevation of LpA/Vi was blocked by the selective VEGF-R2 inhibitor ZM323881. We suggest that glomerular VEGF contributes to the high physiological permeability of mammalian glomeruli to water through an action on endothelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.