Abstract

Aseptic loosening is the most common complication of total joint replacement, which most likely results from an inflammatory response to wear debris shed from the implant. In this study we aimed to investigate whether the lentivirus-mediated microRNA (miRNA) targeting vascular endothelial growth factor (VEGF) could inhibit wear debris-induced inflammation in a murine model. Titanium alloy particles were introduced into established air pouches on BALB/c mice, followed by implantation of calvarial bone from a syngeneic mouse. After treatment by locally delivered lentivirus-mediated VEGF miRNA, inflammatory tissues were collected for histology and molecular analysis. We found that (1) locally delivered miRNA inhibited titanium alloy particle-induced tissue inflammation, including the diminished pouch membrane thickness and reduced inflammatory cellular infiltration and that (2) locally delivered miRNA inhibited expressions of the inflammatory cytokines VEGF, tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and receptor activator of nuclear factor kappa B ligand (RANKL). These findings suggest that local VEGF inhibition might be a promising therapeutic candidate to alleviate particle-induced inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.