Abstract
In obtaining human tenocytes for tendon tissue engineering, a low proliferation rate and phenotype loss during passaging is a problem. It was the authors' aim to evaluate the influence of vascular endothelial growth factor (VEGF) on human tenocyte growth and gene expression. Human tenocytes were exposed to human VEGF in various concentrations (5, 10, and 20 ng/ml) for 5 days. Cell proliferation was counted and expression of tendon-related genes was analyzed. Tenocyte count was 1.4 × 10(5)/ml, 2.7 × 10(5)/ml, 2.3 × 10(5)/ml, and 3.7 × 10(5)/ml for 0, 5, 10, and 20 ng/ml VEGF, respectively. Expression of Col1 was up-regulated 6.4 ± 4.2-fold, 60.1 ± 21.6-fold, and 15.8 ± 10.2-fold for 5, 10, and 20 ng/ml VEGF; all differences were significant with p < 0.05. Col3 was down-regulated to 0.2 ± 0.1-fold, 0.3 ± 0.1-fold, and 0.1 ± 0.03-fold for 5, 10, and 20 ng/ml VEGF; all differences were significant. Eln was up-regulated 2.3 ± 1.7-fold, 25.5 ± 10.9-fold, and 16.6 ± 9.0-fold for 5, 10, and 20 ng/ml VEGF; differences were significant for 10 and 20 ng/ml VEGF. TSC was down-regulated to 0.3 ± 0.1-fold and 0.3 ± 0.1-fold for 5 and 20 ng/ml VEGF; differences were significant for 5 and 20 ng/ml. SCX was up-regulated to 31.3 ± 8.5-fold, 49.1 ± 23.4-fold, and 20.9 ± 9.5-fold for 5, 10, and 20 ng/ml VEGF; all changes were significant. VEGF enhances proliferation and expression of tendon-related genes in human tenocytes. It could therefore be a useful addition for tenocyte cultivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.