Abstract

Cardiac allograft arteriosclerosis is a complex process of alloimmune response, chronic inflammation, and smooth muscle cell proliferation that includes cross talk between cytokines and growth factors. Our results in rat cardiac allografts established alloimmune response as an alternative stimulus capable of inducing vascular endothelial growth factor (VEGF) mRNA and protein expression in cardiomyocytes and graft-infiltrating mononuclear inflammatory cells, which suggests that these cells may function as a source of VEGF to the cells of coronary arteries. Linear regression analysis of these allografts with different stages of arteriosclerotic lesions revealed a strong correlation between intragraft VEGF protein expression and the development of intimal thickening, whereas blockade of signaling downstream of VEGF receptor significantly reduced arteriosclerotic lesions. In addition, in cholesterol-fed rabbits, intracoronary perfusion of cardiac allografts with a clinical-grade adenoviral vector that encoded mouse VEGF(164) enhanced the formation of arteriosclerotic lesions, possibly secondary to increased intragraft influx of macrophages and neovascularization in the intimal lesions. Our findings suggest a positive regulatory role between VEGF and coronary arteriosclerotic lesion formation in the allograft cytokine microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.