Abstract

Conifers have the highest rates of mortality during their first year, often attributed to water stress; yet, this tree life stage is the least studied in terms of hydraulic properties. Previous work has revealed correlations between xylem anatomy to both hydraulic transport capacity and resistance to hydraulic dysfunction. In this study, we compared xylem anatomical and plant functional traits of Pseudotsuga menziesii, Larix occidentalis, and Pinus ponderosa seedlings over the first 10 wk of growth to evaluate potential maximum hydraulic capabilities and resistance to drought-induced embolism. We hypothesized that, based on key functional traits of the xylem, predicted xylem embolism resistance of the species will reflect their previously determined drought tolerances with L. occidentalis, P. menziesii, and P. ponderosa in order of least to most embolism-resistant xylem. Xylem and pit anatomical characteristics and additional hydraulic-related functional traits were compared at five times during the first 10 wk of growth using confocal laser scanning microscopy (CLSM). Based on thickness to span ratio, torus to pit aperture overlap, and torus thickness, primary xylem appeared to be not only more hydraulically conductive but also less embolism-resistant than secondary xylem. By week 10, P. menziesii was predicted to have the most embolism-resistant xylem followed by P. ponderosa and L. occidentalis. Theoretical measurements suggest that hydraulic transport capacities and vulnerability to embolism varied for each species over the first 10 wk of growth; thus, the timing of germination and onset of limited soil moisture is critical for growth and survival of seedlings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.