Abstract

Vascular cognitive impairment (VCI), the second most common cause of dementia in elderly people, is a term that refers to all forms of cognitive disorders that can be attributed to cerebrovascular disease such as manifestations of discrete infarctions, brain hemorrhages, and white matter lesions. The gut microbiota (GM) has emerged recently as an essential player in the development of VCI. The GM may affect the brain’s physiological, behavioral, and cognitive functions through the brain-gut axis via neural, immune, endocrine, and metabolic pathways. Therefore, microbiota dysbiosis may mediate or affect atherosclerosis, cerebrovascular disease, and endothelial dysfunction, which are the predominant risk factors for VCI. Moreover, the composition of the GM includes the bacterial component lipopolysaccharides and their metabolic products including trimethylamine-N-oxide and short-chain fatty acids. These products may increase the permeability of the intestinal epithelium, leading to systemic immune responses, low-grade inflammation, and altered signaling pathways that are associated with the pathogenesis of VCI. In this review, we discuss the proposed mechanisms of the GM in the maintenance of VCI and how it is implicated in acquired metabolic diseases, particularly in VCI regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call