Abstract

Vascular cell behavior on material surfaces, such as heparin-like polymers, can be affected by the surface chemical composition and surface topological structure. In this study, the effects of heparin-like polymers and lotus leaf-like topography on surface vascular cell behavior are considered. By combining multicomponent thermo-curing and replica molding, a polydimethylsiloxane surface containing bromine (PDMS-Br) with lotus leaf-like topography is obtained. Heparin-like polymers with different chemical compositions are grafted onto PDMS-Br surfaces using visible-light-induced graft polymerization. Compared with unmodified PDMS-Br, surfaces modified by sulfonate-containing polymers are more friendly to vascular cells, while those modified by a glyco-polymer are much more resistant to vascular cells. The introduction of lotus leaf-like topography results in different degrees of decrease in cell density on different heparin-like polymer-modified surfaces. In addition, the combination of heparin-like polymers and lotus leaf-like topography results in the change in protein adsorption, indicating that the two factors may affect the surface vascular cell behavior by affecting the adsorption of relative proteins. The combination of bionic surface topography and different chemical components of heparin-like polymers on material surfaces suggests a new way of engineering cell-material interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call