Abstract

AbstractLymphocytes bound at endothelial cell junctions extravasate within minutes. Lymphocyte-endothelial cell binding is mediated by receptors such as vascular cell adhesion molecule 1 (VCAM-1). VCAM-1 activates endothelial cell nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in minutes, and this activity is required for VCAM-1–dependent lymphocyte migration. In this report, we examined mechanisms for activation of matrix metalloproteinases (MMPs) during VCAM-1–dependent lymphocyte migration. Lymphocyte binding to VCAM-1 rapidly activated endothelial cell-associated MMPs. Furthermore, inhibition of MMPs on the endothelial cells but not on the lymphocytes blocked VCAM-1–dependent lymphocyte migration across endothelial cells. The activation of endothelial cell MMPs required VCAM-1–stimulated endothelial cell NADPH oxidase activity as determined by scavenging of reactive oxygen species (ROS) and by pharmacologic or antisense inhibition of NADPH oxidase. Exogenous addition of 1 μM H2O2, the level of H2O2 generated by VCAM-1–stimulated endothelial cells, rapidly activated endothelial cell-associated MMPs. In contrast, activation of lymphocyte-associated MMPs was delayed by hours after binding to VCAM-1, and this activation was blocked by inhibition of endothelial cell ROS generation. There was also a delay in H2O2-induced decrease in lymphocyte-associated tissue inhibitors of metalloproteinases (TIMPs), resulting in an increase in MMP/TIMP ratio. In summary, this is the first report of a mechanism for ROS function in VCAM-1 activation of endothelial cell MMPs during VCAM-1–dependent lymphocyte migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.