Abstract

Thrombosis occurs of a blood clot in the vein and blocking blood flow. The formation of a clot within the artery is called arterial thrombosis. Due to arterial thrombosis, there are heart attacks and strokes that result in more than 17.9 million deaths worldwide each year. Covid-19, one of today's problems, further increases the mortality rate. The thrombosis mechanism includes factors coming from the blood and the vessel wall. This mechanism is based on local blood flow mechanisms and 3-dimensional (3D) vessel geometry. Microfluidics chip-based vascular models examine the interaction between blood and the vessel wall in vitro studies in thrombosis. Until now, the 3-dimensional geometry of the arteries and blood flow system of healthy or unhealthy individuals have not been fully modeled. In this study, a patient-specific occluded blood vessel model was obtained from computed tomography angiography (CTA) data, and miniature vascular structures were developed with a 3D printer. These structures were printed using Acrylonitrile Butadiene Styrene (ABS). 3D ABS samples were used in Polydimethylsiloxane (PDMS) based soft lithography molds to occur microfluidic systems containing miniaturized replicas of in vivo vessel geometries. A comprehensive simulation of stented vasculature was performed by flow analysis of artificial blood and cell culture by placing a commercial stent on PDMS-based models. This project has aimed to develop and characterize modules by creating microfluidic systems using 3D printers to examine the effects of stents placed in the patient's complex vascular system and to simulate operations before treatment and stent placement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call