Abstract

Vascular anomalies currently are classified according to their clinical and histological characteristics. Recent advances in molecular genetics have enabled the identification of somatic mutations in most types of vascular anomalies. The purpose of this study was to collate information regarding the genetic basis of vascular anomalies. The PubMed literature was reviewed for all citations that identified a mutation in a vascular anomaly between 1994 and 2017. Search terms included "vascular anomaly," "mutation," "gene," "hemangioma," "pyogenic granuloma," "kaposiform hemangioendothelioma," "capillary malformation," "venous malformation," lymphatic malformation," "arteriovenous malformation," and "syndrome." Articles that identified both germline and somatic mutations in vascular anomalies were analyzed. Mutations were categorized by type (germline or somatic), gene, signaling pathway, and cell(s) enriched for the mutation. The majority of vascular anomalies had associated mutations that commonly affected tyrosine kinase receptor signaling through the RAS or PIK3CA pathways. Mutations in PIK3CA and G-protein-coupled receptors were most frequently identified. Specific types of vascular anomalies usually were associated with a single gene. However, mutations in the same gene occasionally were found in different vascular lesions, and some anomalies had a mutation in more than one gene. Mutations were most commonly enriched in endothelial cells. Identification of somatic mutations in vascular anomalies is changing the paradigm by which lesions are diagnosed and understood. Mutations and their pathways are providing potential targets for the development of novel pharmacotherapy. In the future, vascular anomalies will be managed based on clinical characteristics and molecular pathophysiology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call