Abstract

Sensing of heat, high light (HL), or mechanical injury by a single leaf of a plant results in the activation of different systemic signals that reach systemic tissues within minutes and trigger systemic acquired acclimation (SAA) or systemic wound responses (SWRs), resulting in a heightened state of stress readiness of the entire plant. Among the different signals associated with rapid systemic responses to stress in plants are electric, calcium, and reactive oxygen species (ROS) waves. These signals propagate from the stressed or injured leaf to the rest of the plant through the plant vascular bundles, and trigger SWRs and SAA in systemic tissues. However, whether they can propagate through other cell types, and whether or not they are interlinked, remain open questions. Here we report that in response to wounding or heat stress (HS), but not HL stress, the ROS wave can propagate through mesophyll cells of Arabidopsis (Arabidopsis thaliana). Moreover, we show that ROS production by mesophyll cells during these stresses is sufficient to restore SWR and SAA transcript accumulation in systemic leaves, as well as SAA to HS (but not HL). We further show that propagation of the ROS wave through mesophyll cells could contribute to systemic signal integration during HL and HS stress combination. Our findings reveal that the ROS wave can propagate through tissues other than the vascular bundles of plants, and that different stresses can trigger different types of systemic signals that propagate through different cell layers and induce stress-specific systemic responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.