Abstract

Additive and subtractive hybrid manufacturing (ASHM) involves the alternating use of additive and subtractive manufacturing techniques, which provides unique advantages for fabricating complex geometries with otherwise inaccessible surfaces. However, a significant challenge lies in ensuring tool accessibility during both fabrication procedures, as the object shape may change dramatically, and different parts of the shape are interdependent. In this study, we propose a computational framework to optimize the planning of additive and subtractive sequences while ensuring tool accessibility. Our goal is to minimize the switching between additive and subtractive processes to achieve efficient fabrication while maintaining product quality. We approach the problem by formulating it as a Volume-And-Surface-CO-decomposition (VASCO) problem. First, we slice volumes into slabs and build a dynamic-directed graph to encode manufacturing constraints, with each node representing a slab and direction reflecting operation order. We introduce a novel geometry property called hybrid-fabricability for a pair of additive and subtractive procedures. Then, we propose a beam-guided top-down block decomposition algorithm to solve the VASCO problem. We apply our solution to a 5-axis hybrid manufacturing platform and evaluate various 3D shapes. Finally, we assess the performance of our approach through both physical and simulated manufacturing evaluations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.