Abstract
This paper presents a systematic study of the helical auxetic yarn (HAY) via careful in-house fabrication and characterisation of a wide range of polymeric fibres and yarns. It provides a better understanding of the auxetic behaviour of the HAY in order to tailor their properties for specific applications. The study focused on three parameters: component moduli, the core/wrap diameter ratio and the initial wrap angle. The results show that a larger difference in component moduli, a higher core/wrap diameter ratio and a lower initial wrap angle can produce a larger maximum negative Poisson’s ratio value and thereby a better auxetic performance for HAYs. All three parameters could be carefully utilised when in combination to achieve the required auxetic behaviour of HAYs. Moreover, the instantaneous true Poisson’s ratio analysis accurately presents the instantaneous behaviour of highly strain dependent HAYs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.