Abstract

Recently, we have presented a novel approach to design metamaterial-inspired notch filters that can be integrated within horn antennas of receiving systems to mitigate the effects of narrowband interfering signals. The filter module consists of a single Split Ring Resonator (SRR), whose rejection band needs to be matched to the bandwidth of the particular interfering signal we want to suppress. Extending our previous work, we show here how it is possible to control the bandwidth of such a filtering module by using different metamaterial-inspired resonators. In particular, we show that, while a reduction of the rejection band can be easily obtained by increasing the miniaturization rate of the resonator, the enlargement of the rejection band cannot be obtained in the same way by simply reducing the resonator quality factor. We show that a solution of the latter problem can be worked out by applying the critical coupling concept and considering the filtering module to be made of two equal SRRs with a proper optimal separation. The effectiveness of the approach is demonstrated trough proper full-wave simulations and experiments on a fabricated prototype. The proposed technique, used here to design a filtering module for a specific radiating system, has a more general relevance and can be applied to all cases where the operation bandwidth of a component is limited by the resonant nature of a single metamaterial-inspired particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.