Abstract
The ability to reliably produce one-dimensional ladder-like coordination polymers that display different crystal packing has been realized. These ladder polymers are produced by incorporating 4,4′-azopyridine (4,4-Azo) molecules as the bridging ligand that act as the stiles or rods for the ladder. The rungs are based upon silver dimers that interact by means of argentophilic forces which were formed with the assistance of the sulfonate anion. Due to the selection of various organosulfonate anions, namely p-toluenesulfonate, trifluoromethanesulfonate, and methanesulfonate, the ability to vary the R-group serves as an easy component to fine tune the overall packing of the polymeric material. The various polymeric structures and their packing will be discussed with special attention to silver–silver distances not only within the ladder but also between nearest neighbor chains. In addition, the change in occupancy of the bridging 4,4-Azo as a function of temperature will be address as this is indicative of pedal motion within the crystal lattice. Lastly, hydrogen bonding patterns in each will also be discussed as a means to produce multi-dimensional frameworks beyond the ladder-like chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.