Abstract

A series of multithiol-functionalized free-base and Zn-coordinated porphyrazines (pz's) have been prepared and characterized as self-assembled monolayers (SAMs) on Au. The synthetic flexibility of the pz's provides a unique opportunity to tune their electronic and chemical characteristics and to control the distance of the redox-active pz macrocycle from the Au surface. This allows us to study the reduction potentials of these surface-bound pz's as a function of film thickness and molecular charge distribution using angle-resolved X-ray photoelectron spectroscopy and cyclic voltammetry. Upon SAM formation, the reduction potentials of all pz's show a significant positive shift from their formal potentials when free in solution (up to approximately +1 V), with the magnitude of the shift inversely related to the Au-pz distance as determined from the film thickness of the pz SAM (thicknesses ranging from 3.5 to 11.8 A). When the pz lies down on the surface, in a SAM of thickness approximately 3.5 A, the charge distribution within a pz macrocycle also plays a role in determining the potential shift. These observations are consistent with our originally proposed mechanism for potential shifts upon binding to a metal surface based on image charge effects and with the analysis of Liu and Newton (J. Phys. Chem. 1994, 98, 7162).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.