Abstract

High temperatures during seedling growth are considered as one of the factors that can modify surviving properties in wheat (Triticum aestivum L.) plant. This work attempts to evaluate the heat shock responses of seedling of winter wheat (Bezostaya-1) using growth parameters (seedling length, embryonal root length and embryonal root number), membrane stability index (MSI) and two dimensional (2D) gel electrophoresis analysis of heat shock proteins (HSPs) during heat shock. Seedlings grown until first leaf opening at controlled conditions (23 degrees C, 200 micromol m(-2) s(-1), 16h day/8h night, 50-60% humidity) were exposed to 37 degrees C or 45 degrees C high temperatures for 2, 4 and 8 hours. While 37 degrees C did not cause any significant change, 45 degrees C heat treatments caused significant decrease in terms of seedling and root length, and leaf MSI for all exposure times. However, all the plants from 45 degrees C heat treatments continued to grow during recovery period. 2D protein analysis indicated that 37 degrees C, 8 hours exposure caused stronger and more diverse heat shock response than the other treatments, followed by 37 degrees C, 4 hours, 45 degrees C, 8 hours, 45 degrees C, 4 hours, 45 degrees C, 2 hours treatments. 5 protein spots, ranging from 6-7.8 pl (isoelectric point) and 27-31.7 kDA molecular weight, were expressed at 37 degrees C, 2 hours and continued at 37 and 45 degrees C for all exposure times. This suggests that these early proteins and other newly synthesized proteins may have protective effects at 37 and 45 degrees C and provide plants for healthy growth during the recovery period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call