Abstract
In the field of wearable robots, actuator efficiency and user safety are frequently addressed by intentionally adding compliance to the actuation unit. However, the implications compliance has on the actuator’s overall performance in different conditions and activities are not fully understood, largely due to single task-focused experimental evaluations of these devices. To overcome this, our paper analyzes the effects that changing mechanical compliance has on the actuator’s overall performance in different ideal conditions in an experimental test setup. The torque performance and electrical energy consumption of an orthotic, adjustable-compliance knee joint actuator are evaluated during emulated walking and sit-to-stand-to-sit movements. Furthermore, the feasibility of combined operation of a dual mechanical compliance configuration during walking is investigated, and its outcomes reported in this work. The results demonstrate that varying mechanical compliance can lead up to 50% energy savings compared to a no-compliance configuration and show that, in general, changing compliance level leads to either energy-optimal or power-optimal actuator performance, but not both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.