Abstract
Context. Long gamma-ray bursts (GRBs) are produced by the collapse of some very massive stars, that emit ultra-relativistic jets. When the jets collide with the interstellar medium they decelerate and generate the so-called afterglow emission, which has been observed to be polarised. Aims. We study the polarimetric evolution of the GRB 210610B afterglow, at z = 1.1341. This allows us to evaluate the role of geometric and/or magnetic mechanisms in the GRB afterglow polarisation. Methods. We observed GRB 210610B using imaging polarimetry with CAFOS on the 2.2 m Calar Alto Telescope and FORS2 on the 4 × 8.1 m Very Large Telescope. Complementary optical spectroscopy was obtained with OSIRIS on the 10.4 m Gran Telescopio Canarias. We studied the GRB light-curve from X-rays to the optical bands and the Spectral Energy Distribution (SED). This allowed us to strongly constrain the line-of-sight extinction. Finally, we studied the GRB host galaxy using optical to NIR data to fit the SED and derive its integrated properties. Results. GRB 210610B had a bright afterglow with a negligible line-of-sight extinction. Polarimetry was obtained at three epochs: during an early plateau phase, at the time when the light curve breaks, and after the light curve steepened. We observe an initial polarisation of ∼4% that goes to zero at the time of the break, and it then again increases to ∼2%, with a change in the position angle of 54 ± 9 deg. The spectrum shows features with very low equivalent widths. This indicate a small amount of material in the line of sight within the host. Conclusions. The lack of dust and the low amount of material in the line of sight to GRB 210610B allowed us to study the intrinsic polarisation of the GRB optical afterglow. The GRB polarisation signals are consistent with ordered magnetic fields in refreshed shock or/and hydrodynamics-scale turbulent fields in the forward shock.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.