Abstract

The purpose of this study was to investigate the impact of fluoroquinolone resistance on the existence and dynamic of MRSA clones. Resistance to ciprofloxacin was induced in strains of community-acquired (CA) MRSA from various sequence types and the fitness cost suffered by mutant derivatives measured in a propagation assay. In addition, the fitness of fluoroquinolone resistant health care-associated (HA) MRSA isolates from major clones prevalent in Hungary were compared with each other and with those of the CA-MRSA derivatives. The genetic background of fluoroquinolone resistance and fitness cost in CA-MRSA was investigated. The fitness cost observed in the CA-MRSA derivatives proved diverse; the derivatives of the ST30-MRSA-IV strain suffered significantly greater fitness cost than those of the ST8-MRSA-IV and ST80-MRSA-IV isolates. Strains from the New York-Japan (ST5-MRSA-II), South German (ST228-MRSA-I) and EMRSA-15 (ST22-MRSA-IV) HA-MRSA clones proved more viable than CA-MRSA derivatives with similar MIC values to ciprofloxacin and HA-MRSA strains from the Hungarian/Brazilian clone (ST239-MRSA-III). Our strains from the New York-Japan, South-German and EMRSA-15 clones seem to have a competitive edge over the tested CA-MRSA isolates in the health care setting. The greater fitness observed in our New York-Japan and South-German strains could account for the replacement by them of the Hungarian/Brazilian clone in Hungary about ten years ago. Alterations in relevant genes were detected. The Ser80 → Phe mutation in the grlA gene may have seriously compromised viability. Surprisingly silent nucleotide substitutions in the grlB gene seemed to impact fitness in derivatives of the ST30-MRSA-IV isolate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call