Abstract

We formulate the basic framework of thermodynamical entropic force cosmology which allows variation of the gravitational constant G and the speed of light c. Three different approaches to the formulation of the field equations are presented. Some cosmological solutions for each framework are given and one of them is tested against combined observational data (supernovae, BAO, and CMB). From the fit of the data, it is found that the Hawking temperature numerical coefficient γ is two to four orders of magnitude less than usually assumed on the geometrical ground theoretical value of O(1) and that it is also compatible with zero. In addition, in the entropic scenario, we observationally test that the fit of the data is allowed for the speed of light c growing and the gravitational constant G diminishing during the evolution of the universe. We also obtain a bound on the variation of c to be Δc / c ∝ 10-5 > 0 , which is at least one order of magnitude weaker than the quasar spectra observational bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.