Abstract
BackgroundThe utilization of short humeral stems in reverse total shoulder arthroplasty (RTSA) has gained attention in recent times. However, concerns regarding the risk of misalignment during implant insertion are associated with their use. MethodsEight fresh-frozen cadaveric shoulders were prepared for dissection and biomechanical testing. A bespoke humeral implant was fabricated to facilitate assessment of neutral, varus, and valgus alignments using a single stem, and 10° was established as the maximum permissible angle for misalignments. Shift in humerus position and changes in deltoid length attributable to misalignments relative to the neutral position were evaluated using a Microscribe 3DLx system. The impingement-free range of motion (IFROM), encompassing abduction, adduction, internal rotation (IR), and external rotation (ER), was gauged using a digital goniometer. The capacity for abduction was evaluated at maximal abduction angles under successive loading on the middle deltoid. A specialized traction system coupled with a force transducer was employed to measure anterior dislocation forces. ResultsRelative to the neutral alignment, valgus alignment resulted in a more distal (10.5 ± 2.4 mm) and medial (8.3 ± 2.2 mm) translation of the humeral component, whereas the varus alignment resulted in the humerus shifting more superiorly (11.2 ± 1.3 mm) and laterally (9.9 ± 0.9 mm) at 0° abduction. The valgus alignment exhibited the highest abduction angle than neutral alignment (86.2°, P<0.001). Conversely, the varus alignment demonstrated significantly higher adduction (18.4±7.4°, P<0.001), IR (68.9±15.0°, P=0.014), and ER (45.2±10.5°, P=0.002) at 0° abduction compared to the neutral alignments. Anterior dislocation forces were considerably lower (23.8N) in the varus group compared to the neutral group at 0°ER (P=0.047). Additionally, abduction capability was markedly higher in varus alignment at low deltoid loads than the neutral alignment (5N, P=0.009; 7.5N, P=0.007). ConclusionsThe varus position enhances rotational ROM but increases instability, while the valgus position does not significantly impact ROM or instability compared to the neutral position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.