Abstract

IntroductionThe understanding of the stresses and strains and their dependence on loading direction caused by an axial deformity is very important for understanding the mechanism of femural neck fractures. The hypothesis of this study is that lower limb malalignment is correlated with a substantial stress variation on the upper end of the femur. The purpose of this biomechanical trial using the finite element method is to determine the effect of the loading direction on the proximal femur regarding the malalignment of the lower limb, and also enlighten the relation between the lower limb alignment and the risk of a femoral neck fracture. MethodsTen segmentations of CT scans were considered. An axial compression load was applied to the femoral head to digitally simulate the physiological configuration in neutral position as well as in different axial positions in varus/valgus alignment. ResultsThe stress at the proximal femur changes as the varus _valgus angle does. It can be observed the smaller absolute stress at angle 10° (valgus) and the higher absolute stress at angle -10° (varus). The mean maximum von Mises stress value was 14.1 (SD=±3.48) MPa for 0°, while the mean maximum von Mises stress value was 17.96 MPa (SD=4.87) for -10° in varus. The fracture risk indicator of the proximal femoral epiphyses changes inversely with angle direction. The FRI was the highest at -10° and the lowest at 10°. ConclusionBased on the biomechanical findings and the fracture risk indicator determined in this preliminary study, varus malalignment increases the risk of femoral neck fracture. Consideration of other parameters such as bone mineral density and morphological parameters should also help to plan preventive medical strategy in the elderly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call