Abstract
We investigate the modal characteristics of coupled-mode guiding structures in which the supported eigenmodes coalesce; the condition we refer to as an exceptional point of degeneracy (EPD). EPD is a point in a system parameter space at which the system eigenmodes coalesce in both their eigenvalues and eigenvectors, where the number of coalescing eigenmodes at the EPD defines the order of the degeneracy. First, we investigate the prospects of gain/loss balance and how it is related to realizing an EPD. Under geometrical symmetry in coupled resonators or coupled waveguides such scheme is often attributed to PT-symmetry; however, we generalize the concept of PT-symmetry to coupled waveguides exhibiting EPDs that do not necessarily have perfect geometrical symmetry. Secondly, we explore the conditions that lead to the existence of EPDs in periodically coupled waveguides that may be lossless and gainless. In general, we investigate properties associated to the emergence of EPDs in various cases: i) uniform, and ii) periodic, lossy or lossless, coupled-mode structures. Generally, the EPD condition is very sensitive to perturbations; however, it was shown recently with experimental and theoretical studies that EPDs' unconventionai properties exist even in the presence of loss and fabrication errors. Extraordinary properties of such systems at EPDs, such as the giant scaling of the quality factor and the high sensitivity to perturbation, provide opportunities for various applications in traveling wave tubes, pulse compressors and generators, oscillators, switches, modulators, lasers, and extremely sensitive sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.