Abstract
Diagnosing plant diseases is a difficult task, but it could be made easier with the use of advanced instrumentation and the latest machine learning techniques. This paper is a further development of a previous authors study by the authors, which has been extended to provide the classification method for tomato diseases and to indicate the spectral ranges of greatest importance for this process. As tomatoes are one of the most popular and consumed vegetables, and diseases of this crop even reduce yields by up to 80% every year, their detection is a vague topic. This manuscript describes research in which spectroscopy was used to develop methods for discriminating between selected tomato diseases. The following, frequently occurring diseases were investigated for this research: anthracnose, bacterial speck, early blight, late blight, and Septoria Leaf Spot. The study used a dataset consisting of 3877 measurements taken with the ASD FieldSpec 4 Hi-Res spectroradiometer in the 350–2500 nm range from 2019/09/10 to 2019/12/20. The highest classification efficiency (F1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F_1$$\\end{document} score) of 0.896 was obtained for the logistic regression based model which was evaluated on Septoria Leaf Spot disease records.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.