Abstract
This paper summarizes the results of various startup system designs and their thermal analysis of the high performance light water reactor (HPLWR) which is the European version of the various supercritical water cooled reactor proposals. In order to study the thermal-hydraulic characteristics of the HPLWR core, a simplified axial one-dimensional (1D) single channel model is developed, which consists of fuel, cladding, coolant and moderator. The model is verified by the related results of Seppälä (2008). Both constant pressure startup systems and sliding pressure startup systems of HPLWR are presented. In constant pressure startup system, the reactor starts at supercritical pressure. It appears that compared with other SCWR designs, the weight of the component required for constant pressure startup of HPLWR is medium and reasonable. Constant pressure startup systems are found feasible from thermal analysis. And for sliding pressure startup, the reactor starts at subcritical pressure. The adequate core power of 25% with 28% flow rate and a feedwater temperature of 280°C are determined during pressurization phase. The thermal analysis results show that the sliding pressure startup systems for HPLWR are also feasible. Considering the same flow rate as the supercritical-pressure light water-cooled fast reactor (SCFR), the component weight required is reduced in HPLWR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nuclear Engineering and Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.