Abstract
Abstract Line-start synchronous permanent magnet motor (LSSPMM) is being considered as a replacement or alternative to asynchronous squirrel-cage motor (AM) in constant speed applications. This is due to the better efficiency and power factor than the asynchronous motor. There are various rotor topologies of LSSPMM concerning the magnets placement and their dimensions. The paper analyses six different rotor topologies in terms of achieving the best efficiency and power factor for the same output power of the motor with minimal consumption of permanent magnet material. All other motor design parameters remain unchanged, i.e. all motor topologies are analysed for the same stator laminations and the same motor windings. The numerical finite element method (FEM) models and dynamic models for obtaining transient characteristics of speed, torque and current verify the proposed design of various motor models. The results from all motor models are compared and adequate conclusions are derived regarding the optimal rotor topology in terms of obtaining the best efficiency and power factor with minimal consumption of permanent magnet material, for the same output power of the motor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.