Abstract
This work aimed at evaluating the potential of amphiphilic polyoxazolines bearing lipid chain called lipopolyoxazolines to reach efficient intracellular delivery. Four lipid chains: linear saturated, linear unsaturated and two branched one of various length were associated to poly(2-methyl-2-oxazoline) block. The evaluation of their physicochemical features and their impact on cell viability and internalization capacity indicated that the linear saturated gathered the highest cell internalization with a good cell viability. Its intracellular delivery capacity was compared to the PEG reference (DSPE-PEG) after being formulated in liposomes and loaded with fluorescent probe. Both POxylated and PEGylated liposomes showed similar characteristics regarding size distribution, drug loading and cell viability. However, their intracellular delivery was dramatically different, with an improved delivery by 30 folds for the POxylated ones. This significantly better performance highlighted the difficulty of PEGylated liposomes to enter the cells by endocytosis, contrary to POxylated liposomes. This study promotes the value of lipopoly(oxazoline) as a lipopoly(ethylene glycol) alternative for effective intracellular delivery and holds great promises for development of nanoformulations for intravenous administration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.