Abstract
Previous assays with weak sinusoidal magnetic fields (SMF) have shown that bacteria that had been exposed to a 50 Hz magnetic field (0.1-1 mT) gave colonies with significantly lower transposition activity as compared to sham-exposed bacteria. These experiments have now been extended by using a pulsed-square wave magnetic field (PMF) and, unexpectedly, it was found that bacteria exposed to PMF showed a higher transposition activity compared to the controls. The increase of the transposition activity was positively correlated with the intensity of the magnetic fields (linear dose-effect relation). This phenomenon was not affected by any bacterial cell proliferation, since no significant difference was observed in number and size of PMF-exposed and sham-exposed colonies. In addition, the cell viability of E. coli was significantly higher than that of the controls when exposed to SMF, and lower than that of the controls when exposed to PMF. Under our experimental conditions it was shown that exposure to PMF stimulates the transposition activity and reduces cell viability of bacteria, whereas exposure to SMF reduces the transposition mobility and enhances cell viability. These results suggest that the biological effects of magnetic fields may critically depend on the physical characteristics of the magnetic signal, in particular the wave shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.