Abstract
This paper proposes a colour image encryption scheme to encrypt colour images of arbitrary sizes. In this scheme, a fixed block size (3 × 8) based block-level diffusion operation is performed to encrypt arbitrary sized images. The proposed technique overcomes the limitation of performing block-level diffusion operations in arbitrary sized images. This method first performs bit-plane decomposition and concatenation operation on the three components (blue, green, and red) of the colour image. Second it performs row and column shuffling operation using the Logistic-Sine System. Then the proposed scheme executes block division and fixed block-level diffusion (exclusive-OR) operation using the key image generated by the Piece-wise Linear Chaotic Map. At last, the cipher image is generated by combining the diffused blocks. In addition, the SHA-256 hashing on plain image is used to make chaotic sequences unique in each encryption process and to protect the ciphertext against the known-plaintext attack and the chosen-plaintext attack. Simulation results and various parameter analysis demonstrate the algorithm’s best performance in image encryption and various common attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.