Abstract

Odorant-binding proteins (OBPs) are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 (AcerOBP11), from the worker bees antennae of Eastern honey bee, Apis cerana. Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB) near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs), methyl p-hydroxybenzoate (HOB), and (E)-9-oxo-2-decanoic acid (9-ODA), alarm pheromone (n-hexanol), and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140) were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.

Highlights

  • Different with solitary insects, honey bees are typical social insects and bee colony generally has three types of bees (Plowes, 2010)

  • AcerOBP11 expressing sensilla basiconica were mainly localized to the tip of antennae (Figures 4B,D), as well as restricted areas close to the interval between two segments on the antennal flagellum (Figures 4C,E). These results suggest that AcerOBP11 is expressed in the antennal sensilla basiconica near the fringe of each segment in A. cerana worker bee

  • Social insects possess complex pheromone-driven behaviors that are regulated by chemical communication systems, regulating the social activities of the whole colony (Pankiw et al, 2004)

Read more

Summary

Introduction

Honey bees are typical social insects and bee colony generally has three types of bees (one queen, numerous workers, and several drones) (Plowes, 2010). We generated recombinant and mutant AcerOBP11 proteins, and identified that AcerOBP11 can bind to bee pheromones and related plant (floral) volatiles using a competitive fluorescence assay.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.