Abstract
The aim of this paper is to prove that every congruence distributive variety containing a finite subdirectly irreducible algebra whose congruences are not linearly ordered has an undecidable first order theory of its finite members. This fills a gap which kept us from the full characterization of the finitely generated, arithmetical varieties (of finite type) having a decidable first order theory of their finite members. Progress on finding this characterization was made in the papers [14] and [15].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.