Abstract
The skeleton of the lattice of all structurally trivial semigroup varieties is known to be isomorphic to an infinitely ascending inverted pyramid (Kopamu, 2003). We digitize the skeleton by representing each variety forming the skeleton as an ordered triple of non-negative integers. This digitization of the lattice, under the pointwise ordering of non-negative integers, provides useful algorithms which could easily be programmed into a computer, and then used to compute varietal joins and meets, or even to draw skeleton lattice diagrams. An application to a certain larger subvariety lattice is also given as an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.