Abstract

The notion of a pseudo-interior algebra was introduced by Blok and Pigozzi in [BPIV]. We continue here our studies begun in [BK]. As a consequence of the representation theorem for pseudo-interior algebras given in [BK] we prove that the variety of all pseudo-interior algebras is generated by its finite members. This result together with Jonsson's Theorem for congruence distributive varieties provides a useful technique in the study of the lattice of varieties of pseudo-interior algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.