Abstract

Geometry is used in different ways in the teaching of linear algebra. In this paper, I offer a typology of these ways, which I call varieties, and address three central questions. The first question is, What varieties of use of geometry in the teaching of linear algebra exist? This question is addressed through an analysis of six linear algebra textbooks, republished in multiple editions in the last decade or so. The analysis resulted in seven varieties, which can be used by researchers to investigate systematically the use of geometry in the teaching of linear algebra, in and outside the classroom. The second question is, What are the different impacts of these varieties on students’ ability to accomplish the following: (a) abstract geometrically-based linear-algebraic concepts into general representations? (b) Extend geometrically-based linear-algebraic concepts to their counterparts in other models, such as space of polynomials, functions, and matrices? This question is addressed through analyses of a sample of various results reported in the literature. The third question is, What might account for these impacts? A conceptual basis underlying the results discussed in this paper is theorized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.